
# **DMTME**

2CSM170040R1021 M429757

# **DMTME-I-485**

2CSM180050R1021 M429758

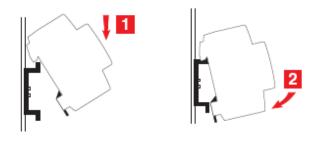
## Инструкция по эксплуатации и монтажу





**Модель DMTME:** Трехфазный мультиметр с четырьмя дисплеями на красных светоизлучающих индикаторах используется для измерения, в том числе в однофазных сетях, основных электрических величин с отображением максимальных, минимальных и средних значений у некоторых электрических параметров. Электрические величины отображаются после нажатия соответствующих клавиш.

**Модель DMTME-I-485:** мультиметр с характеристиками, аналогичными предыдущей модели, оборудован последовательным интерфейсом RS485 с гальванической развязкой и двумя выходами, с которых можно или снимать импульсы, пропорциональные потреблению активной и реактивной энергии, или использовать для активации сигнала тревоги при измерении сетевых параметров. Прибор идеален для проведения мониторинга сети, и может быть использован для хранения данных по уровню потребления электрической энергии.


#### Основные функции

- Проведение измерений и вывод электрических величин на соответствующие светоиндикаторы.
- Размеры: 6 DIN-модулей
- Точные измерения среднеквадратичных, или действующих, значений электрических параметров
- ысокая точность измерений, основанная на методике повышенной дискретизации и автоматической калибровки
- 68 различных измерений с функцией анализа потребляемой мощности
- Возможность выбора в меню конфигурирования функции перехода к странице по умолчанию после одной минуты неактивного состояния
- Автоматическое определение направления тока вторичной обмотки в трансформаторах тока

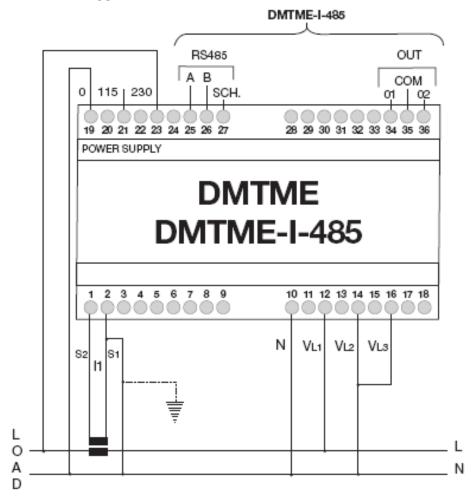
#### Только для модели DMTME-I-485


- Два выхода, с которых можно или снимать импульсы, пропорциональные потреблению активной и реактивной энергии в трехфазной сети, или использовать для активации сигнала тревоги при достижении порогового значения измеряемых параметров.
- Последовательный интерфейс RS485

#### Инструкция по монтажу



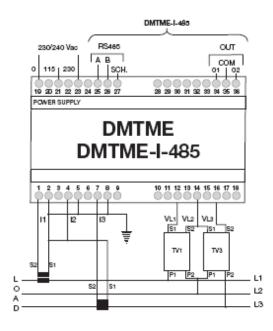
DIN EN 50022 (35 mm<sup>2</sup>)


#### Примеры соединений



Подключение к 3-х фазной линии низкого напряжения и к нейтрали

**Примечание:** Клеммные выводы 2, 5 и 8 необходимо подключить к нейтрали. При необходимости заземлить трансформатор тока не следует клеммный вывод 10 подключать к нейтрали, поскольку в таком случае точность измерений не гарантируется.


#### DMTME-I-485



#### Подключение к однофазной линии низкого напряжения и к нейтрали

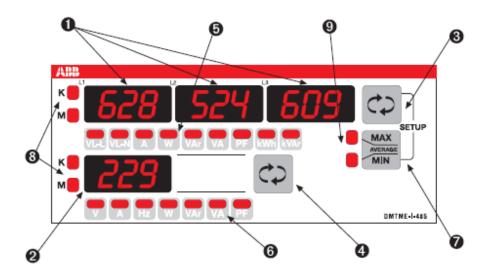
*Примечание:* при однофазном подключении межфазная разность потенциалов незначительная.

**Примечание:** Клеммные выводы 2, 5 и 8 необходимо подключить к нейтрали. При необходимости заземлить трансформатор тока не следует клеммный вывод 10 подключать к нейтрали, поскольку в таком случае точность измерений не гарантируется.



Подключение к 3-х фазной линии без подключения к нейтрали, с использованием двух трансформаторов тока и двух трансформаторов напряжения

*Примечание:* Два трансформатора напряжения необходимы только для подключения к высоковольтной сети


#### Подключение клеммных выводов

| Клемма | Назначение    | Клемма | Назначение   | Клемма | Назначение                |
|--------|---------------|--------|--------------|--------|---------------------------|
| 19     | 0 ~ питание   | 1      | S2 – вход I1 | 10     | N – вход вольтметра       |
| 21     | 115 ~ питание | 2      | S1 – вход I1 | 12     | L1 – вход вольтметра      |
| 23     | 230 ~ питание | 4      | S2 – вход I2 | 14     | L2 – вход вольтметра      |
| 25 (*) | A (+) RS485   | 5      | S1 – вход I2 | 16     | L3 – вход вольтметра      |
| 26 (*) | B (-) RS485   | 7      | S2 – вход I3 | 34(*)  | цифровой выход 1 (импульс |
|        |               |        |              |        | кВт-час/ тревога 1)       |
| 27 (*) | Экран RS485   | 8      | S1 – вход I3 | 35(*)  | цифровой выход - общий    |
|        |               |        |              | 36(*)  | Цифровой выход 2 (импульс |
|        |               |        |              |        | кВА-реакт/тревога 2)      |

36 (\*)(\*) Клеммы 25, 26, 27, 34, 35 и 36 предназначены только для модели DMTME-I-485.

Сечение провода для клемм: 2,5 мм<sup>2</sup>

#### Описание прибора



- (1) Дисплеи L1, L2 и L3 отображают электрические параметры каждой фазы. Кроме того, они используются как электросчетчики и таймеры. Светящаяся точка справа от третьего дисплея (L3) мигает во время передачи данных по интерфейсу RS485.
- (2) Четвертый дисплей предназначен для отображения электрических параметров трехфазной сети.
- (3) Клавиша для просмотра электрических параметров каждой фазы и показаний электросчетчика на дисплеях L1, L2 и L3 (1). При удержании клавиши нажатой в течение нескольких секунд на дисплеях отобразится предыдущая страница.
- (4) Клавиша для просмотра электрических параметров трехфазной сети и показаний таймера на четвертом дисплее (2). При удержании клавиши нажатой в течение нескольких секунд на дисплее отобразится предыдущая страница.
- (5) Девять светоиндикаторов, используемых для указания типа электрических параметров, отображаемых на первых трех дисплеях L1, L2, L3 (1).
- (6) Семь светоиндикаторов используются для указания типа электрических параметров, отображаемых на четвертом дисплее (2).
- (7) Клавиша используется для вывода на дисплеи максимальных значений электрических параметров (при этом горит индикатор MAX (9)), минимальных значений (горит индикатор MIN (9)) и средних, высчитываемых каждые 15 минут. При отображении средних значений одновременно загораются индикаторы AVERAGE, MIN и MAX (9). Когда горит индикатор, указывающий на тип отображаемой информации,

- существует возможность последовательного просмотра различных электрических параметров нажатием клавиш (3) и (4).
- (8) Светоиндикаторы используются для указания масштаба электрических параметров, отображаемых на обеих группах дисплеев (1) и (2): К=кило, параметр х 1 000, М= мега, параметр х 1 000 000.
- (9) Светоиндикаторы указывают на максимальное/минимальное/среднее значение отображаемых параметров на дисплеях (1) и (2).
- (3) + (7) Одновременным нажатием этих клавиш выполняется вход в меню настроек прибора.

### Меню конфигурирования настроек прибора

Для входа в меню конфигурирования нужно одновременно нажать клавиши (3) и (7). После появления на первых трех дисплеях надписи "SETUP", нажать клавишу (4).

В меню конфигурирования клавиши исполняют следующие функции:

- (3) **Увеличивает** значение выбранного параметра. При удержании клавиши происходит быстрый перебор значений. В режиме "*RESET*" нажатие этой клавиши сбрасывает выбранные параметры.
- (7) Уменьшает значение выбранного параметра. При удержании клавиши происходит быстрый перебор значений.
- (4) Подтверждает изменение с переходом на следующую страницу. При удержании клавиши нажатой в течение нескольких секунд на дисплее отобразится предыдущая страница.

В меню конфигурирования отображаются по очереди следующие страницы:

- "Ct rAt": Назначение коэффициента трансформации у трансформатора тока (кA). Диапазон уставки от 1 до 1250, коэффициент по умолчанию: 1. Например: при токе в линии 800 A и токе вторичной обмотки трансформатора тока 5 A (800/5), следует назначить коэффициент, равный 160.
- "Ut rAt": Назначение коэффициента трансформации у трансформатора напряжения (кВ). Диапазон уставки от 1 до 500, коэффициент по умолчанию: 1.
- "PULSE" *только для модели DMTME-I-485:* Возможные значения: 10, 100, 1.00K (1000) или 10.0K (10 000) Ватт-час/импульс (ВА реак/импульс), значение по умолчанию: 10.

Выход O1 = счетчик кВт-час, выход O2 = счетчик кВА реак *Импульсы активной* энергии возможны только при заблокированной функции тревоги (dO1 = OFF, dO2 = OFF)

- "dO1 ALr": *только для модели DMTME-I-485*: Назначение порога для появления тревожного сигнала на выходе O1; OFF = тревога заблокирована

(уставка по умолчанию) При достижении пороговых значений загораются соответствующие индикаторы. HI = значение параметра вышло за верхний предел, LO = значение параметра опустилось ниже нижнего предела. Пример:  $dO1 \ HI \ L1$  (горит индикатор VL-N) = сработала тревога по напряжению между фазой L1 и нейтралью (VL1-N), когда измеренная величина оказалась выше заданного предела.

- "dO1 th": Назначение порога для выбранного параметра.
- "dO1 dLy": Назначение задержки (в секундах) для активации (или сброса) выхода O1 после срабатывания тревоги. Значение по умолчанию: 10.
- "dO2 ALr": *только для модели DMTME-I-485:* Назначение порога для появления тревожного сигнала на выходе O2; OFF = тревога заблокирована (уставка по умолчанию) При достижении пороговых значений загораются соответствующие индикаторы. HI = значение параметра вышло за верхний предел, LO = значение параметра опустилось ниже нижнего предела. Пример: dO2 HI L1 (горит индикатор VL-N) = сработала тревога по напряжению между фазой L1 и нейтралью (VL1-N), когда измеренная величина оказалась выше заданного предела.
- "dO2 th": Назначение порога для выбранного параметра.
- "dO2 dLy": Назначение задержки (в секундах) для активации (или сброса) выхода О2 после срабатывания тревоги. Значение по умолчанию: 10.
- "**PrOt**" *только для модели DMTME-I-485*: Выбор протокола обмена данными по последовательному интерфейсу RS485. 0 = протокол ASCII (зарезервирован для внутреннего использования), 1 = протокол Modbus-RTU. Уставка по умолчанию: 1.
- "Id Adr" *только для модели DMTME-I-485*: Адрес устройства для обмена данными по последовательному интерфейсу RS485. Для протокола Modbus-RTU можно назначать в пределах от 1 до 247, а для протокола ASCII в пределах от 1 до 98. Уставка по умолчанию: 31.
- "**bAUd**" *только для модели DMTME-I-485*: Скорость обмена данными по последовательному интерфейсу RS485. Возможна установка следующих значений: 2.4, 4.8, 9.6, 19.2, где числа соответствуют скорости 2 400 бит/сек, 4 800 бит/сек, 9 600 бит/сек и 19 200 бит/сек, значение по умолчанию 9 600 бит/сек (8 бит).
- "PArItY" *только для модели DMTME-I-485*: Возможно назначение следующих уставок: О = контроль по нечетности, E = контроль по четности, n = контроля нет; уставка по умолчанию: n
- "StOP" *только для модели DMTME-I-485:* Стоповые биты; возможно назначение следующих уставок: 1, 2 (при уставке контроля четности = n), 1 (при уставке контроля четности = O, E, n); уставка по умолчанию: 1

- "PAG 1.2.3." и "PAG 4.": Назначение номера отображаемой по умолчанию страницы. Для первых трех дисплеев номера от 0 до 15. Уставка по умолчанию: 1. Для 4-го дисплея номера от 0 до 7. Уставка по умолчанию: 1. При уставке «0» остается отображенной последняя выбранная страница.
- "t2": Установка (в часах) начального значения таймера обратного счета "t2". Заводская уставка: 8 760,00 (то есть один год).
- "rESEt PEA" (*PEA* = *Peak Values пиковые значения*): Сброс максимальных и минимальных значений (см. также Примечание ниже).
- "rESEt AUG" (AVG = Average cpedhee значение): Сброс средних значений (см. также Примечание ниже).
- "**rESEt En**" (En = Energies энергия): Сброс счетчиков электрической энергии (см. также Примечание ниже).
- "rESEt t1": Сброс таймера "t1" (см. также Примечание ниже).
- "rESEt ALL": Восстановление уставок по умолчанию и сброс всех параметров: максимальных и минимальных значений, средних значений, счетчиков энергии, таймера "t1" (см. также Примечание ниже).
- "rEL": Редактирование прошитого программного обеспечения.

#### Примечание:

Для выполнения сброса параметров нужно на отображаемой странице нажать и удерживать в течение нескольких секунд клавишу (3) до тех пор, пока на первых трех дисплеях не появятся литеры "-C- -L- -r-".

На случай отключения питания в приборе предусмотрено сохранение данных по пиковым и средним значениям параметров, показаниям счетчиков энергии и таймеров "t1" и "t2".

#### Измеряемые электрические величины

(Символ Σ отображается при измерении в трехфазной сети)

| (Символ 2 отображается при измерении в трехфазной сети)                 |                               |  |  |  |
|-------------------------------------------------------------------------|-------------------------------|--|--|--|
| Напряжение между фазами (VL-L)                                          | VL1-L2, VL2-L3, VL3-L1        |  |  |  |
| Одно- и 3-х фазная система напряжений (VL-N и ΣV)                       | VL1-N, VL2-N, VL3-N, ΣV       |  |  |  |
| Одно- и 3-х фазная система токов (А и ΣА)                               | I1, I2, I3, ΣΙ                |  |  |  |
| Частота                                                                 | Hz                            |  |  |  |
| Одно- и 3-х фазная активная электроэнергия (W и ΣW)                     | W1, W2, W3, ΣW                |  |  |  |
| Одно- и 3-х фазная реактивная электроэнергия (VAr и ΣVAr)               | VAr1, VAr2, VAr3, ΣVAr        |  |  |  |
| Одно- и 3-х фазная кажущаяся мощность (VA и ΣVA)                        | VA1, VA2, VA3, ΣVA            |  |  |  |
| Коэффициент мощности / соѕ ф одно- и 3-х фазной сети с соответствующим  | PF1, PF2, PF3, ΣPF            |  |  |  |
| символом реактивности ("+" = индуктивная энергия, "-" = емкостная       |                               |  |  |  |
| энергия)                                                                |                               |  |  |  |
| Подсчет потребляемой одно- и 3-х фазной активная и реактивной           | KWh-L1, KWh-L2, KWh-L3,       |  |  |  |
| электроэнергии (межфазное напряжение отображается на дисплеях L1, L2    | ΣkWh-3P,KVArh-L1, KVArh-L2,   |  |  |  |
| and L3)                                                                 | KVArh-L3, ΣkVArh-3P           |  |  |  |
| Отображение максимальных значений                                       |                               |  |  |  |
| Фазное напряжение (VL-N)                                                | VL1-N, VL2-N, VL3-N (MAX)     |  |  |  |
| Фазный ток (А)                                                          | I1, I2, I3 (MAX)              |  |  |  |
| Одно- и 3-х фазная активная электроэнергия (W и ΣW)                     | W1, W2, W3, ΣW (MAX)          |  |  |  |
| Одно- и 3-х фазная реактивная электроэнергия (VAr и ΣVAr)               | VAr1, VAr2, VAr3, ΣVAr (MAX)  |  |  |  |
| Одно- и 3-х фазная кажущаяся мощность (VA и ΣVA)                        | VA1, VA2, VA3, ΣVA (MAX)      |  |  |  |
| Отображение минимальных значений                                        |                               |  |  |  |
| Фазное напряжение (VL-N)                                                | VL1-N, VL2-N, VL3-N (MIN)     |  |  |  |
| Фазный ток (А)                                                          | I1, I2, I3 (MIN)              |  |  |  |
| 3-х фазная активная мощность ( <b>УW</b> )                              | ΣW (MIN)                      |  |  |  |
| 3-х фазная реактивная мощность ( <b>ΣVAr</b> )                          | ΣVAr (MIN)                    |  |  |  |
| 3-х фазная кажущаяся мощность ( <b>ΣVA</b> )                            | ΣVA (MIN)                     |  |  |  |
| Отображение средних значений (каждые 15 минут)                          |                               |  |  |  |
| Одно- и 3-х фазная активная электроэнергия (W и <b>Σ</b> W)             | W1, W2, W3, ΣW (AVG)          |  |  |  |
| Одно- и 3-х фазная реактивная электроэнергия (VAr и ΣVAr)               | VAr1, VAr2, VA3, ΣVAr (AVG)   |  |  |  |
| Одно- и 3-х фазная кажущаяся мощность (VA и ΣVA)                        | VA1, VA2, VA3, ΣVA (AVG)      |  |  |  |
| Таймеры (непрерывное отображение на дисплеях L1, L2 и L3)               |                               |  |  |  |
| «Автономный» счетчик времени (часы и минуты). Сбрасывается из меню кон  | фигурирования.                |  |  |  |
| Таймер с обратным отсчетом времени (часы и минуты) для напоминания о пр |                               |  |  |  |
| обслуживания (ТО). При достижении счетчиком нулевого значения, тот прод | олжает считать, отображая     |  |  |  |
| отрицательные числа, которые означают на какое время просрочено ТО.     | _                             |  |  |  |
|                                                                         |                               |  |  |  |
| Параметры, которые могут активировать тревожную сигнализацию (то        | олько для модели DMTME-I-485) |  |  |  |
| Напряжение между фазами (VL-L)                                          | VL1-L2, VL2-L3, VL3-L1        |  |  |  |
| Одно- и 3-х фазная система напряжений (VL-N и ΣV)                       | VL1-N, VL2-N, VL3-N, ΣV       |  |  |  |
| Одно- и 3-х фазная система токов (А и ΣА)                               | Ι1, Ι2, Ι3, ΣΙ                |  |  |  |
| Одно- и 3-х фазная активная электроэнергия (W и <b>ΣW</b> )             | W1, W2, W3, ΣW                |  |  |  |
| Одно- и 3-х фазная реактивная электроэнергия (VAr и <b>ΣVAr</b> )       | VAr1, VAr2, VAr3, ΣVAr        |  |  |  |
| Одно- и 3-х фазная кажущаяся мощность (VA и ΣVA)                        | VA1, VA2, VA3, ΣVA            |  |  |  |
| Соѕф для одно- и 3-х фазной сети                                        | PF1, PF2, PF3, ΣPF            |  |  |  |
| Таймер с обратным отсчетом времени                                      | , ,                           |  |  |  |
|                                                                         | 1                             |  |  |  |

**Примечание:** Если при инсталляции прибора или в процессе эксплуатации происходят сбои ПЗУ (Е2ргот), то прибор прекращает работу, а на первых трех дисплеях отображаются литеры "INI" с внутренним кодом ошибки. В таких случаях нужно нажать любую клавишу. В результате все параметры сбросятся в значения по умолчанию, которые при необходимости можно откорректировать.

## Технические характеристики

Габаритные размеры и вес

| Размеры        | 105 мм х 90 мм х 63 мм (Дл х Выс х Шир), корпус System Pro M с |  |
|----------------|----------------------------------------------------------------|--|
|                | прозрачной крышкой.                                            |  |
| Bec            | Около 350 г                                                    |  |
| Степень защиты | IP50 лицевая панель, IP20 клеммная колодка                     |  |

#### ЭЛЕКТРОПИТАНИЕ

| Напряжение                                                                                                                                                          | Частота    | Потребляемая мощность | Предохранитель              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|-----------------------------|
| 230 В (действующее значение) (+15% -10%) 240 В (действующее значение) (+10% -15%) 115 В (действующее значение) (+15% -10%) 120 В (действующее значение) (+10% -15%) | 45 ÷ 65 Гц | < 6BA                 | Внешний предохранитель 0,1А |

Вход вольтметра

| Диапазон                     | 10÷500 В (действующее значение) (L-N) |
|------------------------------|---------------------------------------|
| Макс. неразрушающее значение | 550 В (действующее значение)          |
| Входной импеданс L-N         | Более 8 МОм                           |

Вход амперметра (только с внешними трансформаторами тока)

|                                       | - F · · · · · · · · · · · · · · · · · ·                                   |
|---------------------------------------|---------------------------------------------------------------------------|
| Диапазон                              | 50 мА ÷5 А (действующее значение)                                         |
| Перегрузка                            | 1,1 постоянная                                                            |
| Макс. рассеиваемая мощность           | $1,4 \text{ BA при I}_{\text{max}} = 5\text{A}$ (действующее значение) по |
|                                       | входу на каждой фазе                                                      |
| Способ измерения                      | Измерение тока с помощью внутренних шунтов                                |
|                                       | и внешних трансформаторов тока                                            |
| Направление тока во вторичной обмотке | Автоматическое определение и регулирование                                |
| трансформатора тока.                  | при включении, независимо на каждой фазе                                  |

**Шифровой выхо**д

| дифровой выход                                           |                                                          |
|----------------------------------------------------------|----------------------------------------------------------|
| Длительность импульса: 50 мсек - OFF (минимум)           | Максимальная частота: 10 импульсов в секунду             |
| / 50 мсек - ON                                           |                                                          |
| Максимальный потенциал на контакте V $_{max}$ : 48 В     | Максимальный ток через контакт I <sub>max</sub> : 100 мА |
| (пиковое значение для постоянного и переменного          | (пиковое значение для постоянного и                      |
| тока)                                                    | переменного тока)                                        |
| Максимальная мощность рассеивания W <sub>max</sub> : 450 | Напряжение пробоя изоляции: 750 В мах                    |
| мВт                                                      |                                                          |

Точность измерений

| <b></b>           |                                                                                                         |
|-------------------|---------------------------------------------------------------------------------------------------------|
| Напряжение        | $\pm 0.5\%$ полной шкалы $\pm 1$ разряд в диапазоне $10~\mathrm{B} \div 500~\mathrm{B}$ (действующее    |
|                   | значение переменного напряжения) VL-N                                                                   |
| Ток               | $\pm~0.5\%$ полной шкалы $\pm~1$ разряд в диапазоне 50 мА $\div~5$ А (действующее                       |
|                   | значение)                                                                                               |
| Активная мощность | $\pm 1\% \pm 0.1\%$ полной шкалы (от $\cos \varphi = 0.3$ индуктивн. to $\cos \varphi = -0.3$ емкостн.) |
| Частота           | $40.0 \pm 99.9 \Gamma$ ц: $\pm 0.2\% \pm 0.1\Gamma$ ц                                                   |
|                   | $100 \pm 500 \Gamma_{\text{H}}; \pm 0.2\% \pm 0.1\Gamma_{\text{H}}$                                     |

Подсчет электроэнергии

| Максимальное значение энергии в одно- и трехфазной сети | 4 294,9 MBт-час (MBA реак – час) при KA = KV = 1 |
|---------------------------------------------------------|--------------------------------------------------|
| Класс точности                                          | 1                                                |

Рабочие условия

| Рабочая температура     | $0^{\circ}\text{C} \pm 50^{\circ}\text{C}$   |
|-------------------------|----------------------------------------------|
| Температура хранения    | $-10^{\circ}\text{C} \pm 60^{\circ}\text{C}$ |
| Относительная влажность | 90% (без конденсата) при температуре 40°C    |

## ССЫЛКИ на нормативные документы

#### Электрическая безопасность

Директива ЕС № 73/23/СЕЕ, раздел ''Low Voltage'" (низковольтное оборудование)

#### Электромагнитная совместимость

Директива ЕС № 89/336/СЕЕ, раздел "Electromagnetic Compatibility" (электромагнитная совместимость)

# Меню конфигурирования

| Параметры                                                                                 | Возможные значения                                                                                                                                                                    | Заводские<br>настройки                                            |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Коэффициент трансформации у трансформатора напряжения                                     | 1÷500                                                                                                                                                                                 | 1                                                                 |
| Коэффициент трансформации у трансформатора тока                                           | 1÷1250                                                                                                                                                                                | 1                                                                 |
| Программируемое отношение к импульсу (1)                                                  | 10 100 1000 10000 Ватт-<br>час/импульс (ВА реак/импульс)                                                                                                                              | 10                                                                |
| Параметры, которые могут активировать тревожную сигнализацию на выходах O1 и/или O2 (1)   | OFF, V12, V23, V31, VL1-N, VL2-N, VL3-<br>N, ΣV, I1, I2, I3, УI, W1, W2, W3, ΣW, VAr1, VAr2, VAr3, ΣVAr, VA1, VA2, VA3, ΣVA, PF1, PF2, PF3, ΣPF, счетчик t2 (OFF = тревога отключена) | OFF - отключено                                                   |
| Пороговые значения тревожного сигнала на выходах О1 и/или О2 для выбранного параметра (1) | Зависит от диапазона измерения выбранного параметра                                                                                                                                   | Приблизительно половина полной шкалы выбранного диапазона         |
| Задержка активации тревожного сигнала на выходах O1 и/или O2 (1)                          | 1÷900 (секунд)                                                                                                                                                                        | 10                                                                |
| Тип последовательного протокола (1)                                                       | 0 = ASCII зарезервирована только для внутреннего использования 1 = Modbus-RTU                                                                                                         | 1                                                                 |
| Логический адрес прибора (1)                                                              | ASCII Prot.: 1÷98<br>Modbus-RTU Prot.: 1÷247                                                                                                                                          | 31                                                                |
| Скорость передачи по последовательному интерфейсу RS485 (1)                               | 2,4 4,8 9,6 19,2<br>(9,6 означает 9 600 бит/сек)                                                                                                                                      | 9,6                                                               |
| Контроль четности при передаче по последовательному интерфейсу RS485 (1)                  | О = контроль по нечетности, E = контроль по четности, n = контроля нет;                                                                                                               | n                                                                 |
| Стоповые биты последовательного интерфейса RS485 (1)                                      | 1, 2 (при контроле четности = n),<br>1 (при контроле четности = O, E, n)                                                                                                              | 1                                                                 |
| РАG 1.2.3. (страница по умолчанию, отображаемая на первых трех дисплеях)                  | 0÷15 (При уставке «0» остается отображенной последняя выбранная страница.)                                                                                                            | 1                                                                 |
| РАG 1.2.3. (страница по умолчанию, отображаемая на четвертом дисплее)                     | 0÷7 (При уставке «0» остается отображенной последняя выбранная страница.)                                                                                                             | 1                                                                 |
| «Автономный» счетчик часов и минут - "t1"                                                 | Счетчик сбрасывается из меню конфигурирования.                                                                                                                                        | Диапазон установки счетчика: 0÷10 000 000 часов (около 1 140 лет) |
| Таймер с обратным отсчетом часов и минут - "t2"                                           | Начальная установка в часах:<br>1÷32000 (цикл по 3,5 года)                                                                                                                            | 8 760 часов (один год)                                            |
| Периодичность подсчета средних значений                                                   | -                                                                                                                                                                                     | 15 минут.                                                         |

<sup>&</sup>lt;sup>(1)</sup> только для модели DMTME-I-485:

#### Редакция С1 (для ПЗУ версии 1.13 и выше)

Учитывая постоянные изменения требований нормативов и параметров изделий, компания оставляет за собой право модифицировать параметры данного изделия в любое время. Приобретая прибор, необходимо сверить соответствие версии и документации.



Tel. +39 02 9034 1 Fax +39 02 9034 7609